PotentialNet for Molecular Property Prediction
نویسندگان
چکیده
منابع مشابه
RaptorX-Property: a web server for protein structure property prediction
RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learnin...
متن کاملApplication of molecular dynamics simulations in molecular property prediction II: Diffusion coefficient
In this work, we have evaluated how well the general assisted model building with energy refinement (AMBER) force field performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, five organic compounds in aqueous solutions, four proteins in aqueous solutions, and nine organic compounds in nonaqueous solutions. An efficient sampling st...
متن کاملPatchSurfers: Two methods for local molecular property-based binding ligand prediction.
Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a targe...
متن کاملMolecular structure-property relationships for alkenes.
Structure-property relationships were obtained for 11 physical and chemical properties (boiling points (bp), melting points (mp), molar refractions (MR), molar volumes (MV), heats of combustion (HCKJ), molar heats of vaporization (HVMOL), flashpoints (FLASHK), second virial coefficients (VIRC2), critical temperatures (Tc), critical pressures (Pc), and viscosities (VISC)) for a data set consisti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Central Science
سال: 2018
ISSN: 2374-7943,2374-7951
DOI: 10.1021/acscentsci.8b00507